LEAF Technical Training on Reference Level Development

Katie Goslee and Silvia Petrova
Ecosystem Services Unit, Winrock International

www.winrock.org/ecosystems
carbonservices@winrock.org
Calculating Carbon Stocks
Steps for Emission Factor (EF) Creation

1. Assess Existing Data
2. Stratify Forests
3. RL Design
4. Carbon Stock Field Sampling: Design, Implement, and Analyze Data
5. Create Deforestation Emission Factors
Calculating carbon stocks

- After field work has been completed, need to calculate carbon per hectare in each pool
- For plots:
 - Perform calculations needed for each pool
 - Scale plot measurements to per hectare
 - Average across plots per stratum for each carbon pool
 - Sum across pools
Calculate carbon stocks for key pools

- Soil and Peat
- Above Ground (AG) non-tree woody
- Above Ground (AG) non-tree non-woody
- Belowground Live Biomass
- Litter
- Wood products
- Dead wood
- Standing deadwood
- Lying deadwood
- Soil and Peat Carbon
Carbon versus Biomass

• Carbon estimated to be a constant proportion of biomass (e.g. IPCC defaults)
 – Live biomass, standing + lying dead wood:
 Biomass * 0.47 = Carbon
 – Litter: Biomass * 0.37 = Carbon

• OR: project can measure proportion in laboratory using selection of subsamples taken
Calculating Plot Area

- Trees were measured in different NEST sizes
- Area of a circle: \(A = \pi r^2 \)
 - 4 m radius = 50.3 m²
 - 14 m radius = 615.8 m²
 - 20 m radius = 1256.6 m²
Correcting Plot Area for Slope

• If plot is sloped, need to correct plot area because actual measurement of plot radius on slope will be larger than horizontal projection

• If distance is not corrected for slope, biomass will be underestimated
Scaling Factor: How Many Plots Per Ha?

• Measure trees in different nest sizes
• Need to standardize all measurements to a per-hectare basis
• 1 ha = 10,000 m²
• How many of each size plot are in 1 ha?
 – 4 m radius = 50.3 m² = 198.9 (10,000 / 50.3)
 – 14 m radius = 615.8 m² = 16.2 (10,000 / 615.8)
 – 20 m radius = 1256.6 m² = 8.0 (10,000 / 1256.6)
• Each tree measured in a nest should be multiplied by the appropriate scaling factor for its nest size
• Need scaling factors for clip plots and litter plots also
Live Tree Carbon

- Use regression or allometric equation to estimate biomass from DBH
 - Relationship between tree diameter and mass (‘biomass’) of tree
 - Many equations published for forests worldwide
 - Local regression equations may exist in literature

Chave AG Biomass

\[\text{Chave AG Biomass} = \text{wood density} \times \exp(-1.499 + 2.148 \times \ln(DBH) + 0.207 \times \ln(DBH)^2 - 0.0281 \times \ln(DBH)^3) \]

Equation: Chave et al. 2005
Wood density from Reyes et al. 1992
Live Tree Carbon

- Calculate biomass of each tree (kg)
- Multiply biomass by scaling factor for appropriate nest size
- Sum biomass/ha of all trees for total plot biomass per ha
- Example
Belowground Tree Carbon

• Use Root-Shoot ratios
 – From literature (Mokany et al 2006)
 • $B_{GB} = 0.235 \times A_{GB}$, if $A_{GB} > 62.5$ tC/ha
 • $B_{GB} = 0.205 \times A_{GB}$, if $A_{GB} \leq 62.5$ tC/ha
 – From fieldwork

• Example

Non-tree pools

• Deadwood
 – Standing and lying
 – Requires deadwood density

• Non-tree vegetation
 – Saplings
 – Shrubs
 – Grasses
 – Herbaceous vegetation
 – Litter

• Methods described in SOPs
Calculating Uncertainty In Each Pool

• Standard deviation = measurement of variation from the average value

• Calculate average ("mean") and standard deviation across all plots within a stratum
 – Mean = \[
 \text{sum of all carbon values} \div \text{number of samples (N)}
 \]
 – Standard deviation:
 • Calculate the difference of each data point from the mean
 • Square the result of each
 • Calculate the average of these values and take the square root
95% Confidence Interval

• For normally distributed data, we expect that 95% of data points will fall within 1.96 standard deviations of the mean.

• Calculate the 95% confidence interval using
 – Standard deviation (σ)
 – Sample size (n)

• Report C stock as mean ± 95%CI

• Uncertainty can also be estimated as a percentage of the mean (95% CI / mean) x 100 → should be <10%

\[
95\% CI = 1.96 \left(\frac{\sigma}{\sqrt{n}} \right)
\]
Estimating total uncertainty

- Calculate % uncertainty in each pool
- Quantify total uncertainty across all pools using IPCC Tier 1 “Simple Propagation of Errors” method

\[
U_{total} = \sqrt{(U_1 \times x_1)^2 + (U_2 \times x_2)^2 + \ldots + (U_n \times x_n)^2} / (x_1 + x_2 + \ldots + x_n)
\]

Where:
- \(U_{total}\) = total uncertainty
- \(U_1\) = uncertainty associated with each pool
- \(x_1\) = average (mean) of each pool
Estimating total uncertainty

• Monte Carlo analysis (commercial software available)
 – Complex but should be used if there are correlations between datasets or if error (>100 %)
 – Correlations will exist between various measured carbon pools and between estimates at different times
LEAF Technical Training on Reference Level Development

Katie Goslee and Silvia Petrova
Ecosystem Services Unit, Winrock International

www.winrock.org/ecosystems
carbonservices@winrock.org

Material from this publication may be reproduced provided Winrock International and the authors are acknowledged as the source.