LEAF Technical Training on Reference Level Development

Katie Goslee and Silvia Petrova
Ecosystem Services Unit, Winrock International

www.winrock.org/ecosystems
carbonservices@winrock.org
Calculating Deforestation Emission Factors
Steps for Emission Factor (EF) Creation

1. Assess Existing Data
2. Stratify Forests
3. Carbon Stock Field Sampling: Design, Implement, and Analyze Data
4. Calculate Deforestation Emission Factors

RL Design
Calculating Emission Factors

- Calculate pre-deforestation carbon stocks for each pool
- Identify carbon stocks of post-deforestation land use
- Estimate carbon stocks stored as wood products
- Determine soil carbon emitted as a result of deforestation, if significant
- Sum carbon stock changes across pools
Emission Factors

- The carbon stocks for each forest stratum undergoing change is determined to define emission factors.
Carbon Stocks to Emission Factors

\[EF_{deforestation} = \left(C_{bio.pre} - C_{bio.post} - C_{wp} + C_{SOC} \right) \times \frac{44}{12} \]

Where:

- \(EF_{deforestation} \) = Emission factor for deforestation, tCO₂ ha\(^{-1}\)
- \(C_{bio.pre} \) = Carbon stock in biomass prior to deforestation, t C ha\(^{-1}\)
- \(C_{bio.post} \) = Carbon stock in forest biomass after deforestation, t C ha\(^{-1}\)
- \(C_{wp} \) = Carbon stock in wood products following deforestation, t C ha\(^{-1}\)
- \(C_{SOC} \) = Soil carbon stocks emitted, t C ha\(^{-1}\)
- \(\frac{44}{12} \) = Conversion factor from carbon to CO₂

Include emissions from non- CO₂ gases if relevant
Pre-deforestation C stocks

\[C_{bio\,pre} = (C_{agb} + C_{bgb} + C_{dw} + C_{lit} + C_{sap}) \]

Where:

- \(C_{bio\,pre} \) = Carbon stock in biomass, t C ha\(^{-1}\)
- \(C_{agb} \) = Carbon stock in aboveground biomass, t C ha\(^{-1}\)
- \(C_{bgb} \) = Carbon stock in belowground biomass, t C ha\(^{-1}\)
- \(C_{dw} \) = Carbon stock in deadwood pools, t C ha\(^{-1}\)
- \(C_{lit} \) = Carbon stock in litter, t C ha\(^{-1}\)
- \(C_{sap} \) = Carbon stock in saplings, t C ha\(^{-1}\)
Post deforestation C stocks

\[C_{bio.post} = (C_{agb} + C_{bgb} + C_{dw} + C_{lit} + C_{sap}) \]

- Use carbon pool stocks from appropriate post-deforestation land use
 - May include more herbaceous vegetation and fewer trees, such as in agriculture
- Proxy areas may be measured
- Default values – from IPCC or regionally developed
Carbon in wood products

• Harvested carbon may be stored in short and long term wood products - C_{wp}
• Landfilled wood also stores harvested carbon
• Need to account for life span of wood products
• Default values – from IPCC or regionally developed
Carbon Stocks to Emission Factors

\[C_{SOC} = [C_{soil} - (C_{soil} \times F_{LU} \times F_{MG} \times F_l)] \]

Where:

\(C_{SOC} = \text{Soil carbon stocks emitted, } t \text{ CO}_2 \text{ ha}^{-1} \)
\(C_{soil} = \text{Carbon stocks in soil organic matter pool (to 30 cm), } t \text{ C ha}^{-1} \)
\(F_{LU} = \text{IPCC stock change factor for land-use systems for a particular land-use, dimensionless} \)
\(F_{MG} = \text{IPCC stock change factor for management regime, dimensionless} \)
\(F_l = \text{IPCC stock change factor for input of organic matter, dimensionless} \)
Soil Factors (IPCC 2006)

<table>
<thead>
<tr>
<th>Converted to</th>
<th>F_{LU}</th>
<th>F_{MG}</th>
<th>F_{I}</th>
<th>Combined factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent agriculture</td>
<td>0.48</td>
<td>1.00</td>
<td>1.00</td>
<td>0.48</td>
</tr>
<tr>
<td>Unpaved roads</td>
<td>0.82</td>
<td>1.00</td>
<td>0.92</td>
<td>0.75</td>
</tr>
<tr>
<td>Shifting cultivation-long cycle</td>
<td>0.80</td>
<td>1.00</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>Shifting cultivation-short cycle</td>
<td>0.65</td>
<td>1.00</td>
<td>1.00</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Example

- Excel worksheet and exercise